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Abstract

In many neuroimaging studies functional connectivity measurements are collected
across a cohort of multiple subjects. Given such data, a fundamental problem corre-
sponds to accurately quantifying variability across subjects. In this vignette we provide a
brief illustration of the recently proposed Mixed Neighborhood Selection (MNS) algorithm
which is able to simultaneously estimate connectivity networks at the population and sub-
ject level as well as quantify inter-subject variability. The MNS package includes parallel
implementations the MNS algorithm as well as cross-validation functions; thereby provid-
ing computationally e�cient methods through which to select regularization parameters
and perform model estimation.

Moreover, this vignette also introduces an algorithm from which to simulate functional
connectivity networks for a cohort of related individuals. It is well documented that
functional connectivity displays reproducible activation patterns across subjects while
simultaneously exhibiting high inter-subject variability. To our surprise, we found there
to be limited algorithms through which to simulate connectivity networks for a cohort of
subjects which display these widely accepted properties. To address this, we present a
simple and e�cient method through which to simulate functional connectivity networks
for multiple subjects.
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1 Introduction

A cornerstone in the understanding brain connectivity is the notion that connectivity can be
represented as a graph or network composed of a set of nodes interconnected by a set of edges
[Bullmore and Sporns, 2009]. In the context of functional connectivity, edges represent sta-
tistical dependencies across spatially remote brain regions [Friston, 2011]. Understanding and
quantifying variability in functional connectivity is a fundamental problem in modern neuro-
science [Kelly et al., 2012, Mueller et al., 2013]. Standard approaches within the neuroimaging
literature tend to either ignore this variability by estimating a single network across all sub-
jects or proceed too cautiously by estimating a network for each subject independently1. The
former strategy makes implicit assumptions regarding the exchangeability of the data which
are di�cult to justify in practice. Conversely, the latter approach does not exploit the shared
network structure across subjects leading to detrimental e�ects on the quality of the estimated
networks.

In order to partially address this issue, the mixed neighborhood selection (MNS) algorithm
was recently proposed [Monti et al., 2015a]. Brie�y, the MNS algorithm looks to decompose the
network structure into two classes: reproducible edges which are present across the majority
of the cohort and edges which represent subject-speci�c idiosyncrasies. It follows that the
latter captures the inter-subject variation.

In order to empirically validate the proposed MNS algorithm we require a method through
which to produce synthetic data where the true underlying covariance structure is known.
Moreover, it would be desirable for such data to showcase the many hallmarks of functional
imaging data. To our surprise, we found that while there is a wide array of algorithms for
simulating connectivity on a subject-speci�c level, limited attention has been given to gener-
ating simulated data for a cohort of related subjects. As a result, in this vignette we present
and implement a novel algorithm through which to simulate realistic functional connectivity
networks for a cohort of subjects.

The objective of this vignette is two-fold. First, we introduce the aforementioned algorithm
through which to simulate functional connectivity across a cohort of subjects. The proposed
algorithm was designed to display several of the well-document properties of functional con-
nectivity networks as well as properties reported during an exploratory data analysis of the
ABIDE data set [Di Martino et al., 2014]. This is presented in Section 2. Second, we introduce
the MNS algorithm together with the corresponding MNS package. We highlight the strengths
of the MNS algorithm through the use of examples with simulated data.

2 Simulating functional connectivity networks for a cohort of

subjects

There is a wealth of literature and algorithms for simulating a functional connectivity network
for a single subject. However, there are limited methods through which to simulate connectiv-
ity networks across a cohort of subjects. While it would be possible to assume the networks
are identical across all subjects, this corresponds to a tenuous assumption which can rarely
be validated in practice.

1More sophisticated methods (e.g., those proposed by Varoquaux et al. [2010]) have also been suggested
but we do not discuss this further in this vignette. See Monti et al. [2015a] for a detailed discussion
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In this section we present a novel algorithm through which to simulate functional con-
nectivity networks across a cohort of subjects. The resulting networks are shown to display
some of the well-documented properties of connectivity. These properties include signi�cant
inter-subject variability [Mueller et al., 2013] together with a subset of highly reproducible
edges.

The remainder of this section is organized as follows: we brie�y review some of the prop-
erties of functional connectivity networks in Section 2.1. The proposed algorithm is then
introduced in Section 2.2 together with an alternative method in Section 2.3. We conclude by
presenting some examples in Section 2.4.

2.1 Properties of functional connectivity networks

There are several well-documented properties of functional connectivity networks, chief among
which is their modular structure and the presence of hub nodes [Bullmore and Sporns, 2009].
In addition to this, high inter-subject variability is often reported across subjects. A hallmark
of this variability is that it does not occur uniformly but instead tends to display certain
characteristics: for example the pre-frontal region is often reported to display high inter-
subject variability [Finn et al., 2015] and the distance between regions is also hypothesized to
play a role [Van Dijk et al., 2012].

It is often the case that the these characteristics are quanti�ed and measured via the
use of graph theoretic techniques [Rubinov and Sporns, 2010]. For example, the clustering
coe�cient is often employed as a measure of functional segregation or modularity while the
degree distribution is often employed to see if the network follows a power-law distribution.

In the remainder of this section we present a new algorithm through which to simulate
multiple related functional connectivity networks and subsequently employ graph theoretic
measures to demonstrate that the proposed algorithm is able to recreate many of the properties
typically observed in neuroimaging data. In particular we focus on recreating the following
properties:

1. Networks should display a scale-free organization [Bullmore and Sporns, 2009]. This
implies that node degrees should follow a power-law distribution resulting in the presence
of highly connected hub nodes.

2. Signi�cant inter-subject variability should be present. Following from reports in the
literature, we assume there is a subset of edges which demonstrate the highest variability
(e.g., these could correspond to edges in the pre-frontal region or between spatially
remote regions as discussed previously).

3. Finally, based on an exploratory data analysis of the ABIDE data (documented in Monti
et al. [2015a]) we found that the clustering coe�cient, a measure of network cohesiveness
[Barrat et al., 2004], was signi�cantly higher within a population network as opposed to
subject-speci�c networks We therefore look to recreate this property as well.

2.2 Proposed algorithm

The proposed algorithm proceeds as follows: �rst a population network is simulated according
to the preferential attachment model of Barabási and Albert [1999]. This corresponds to the
set of reproducible edges which are shared throughout the entire cohort of subjects, denoted
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by Epop. In order to obtain the corresponding precision matrix, Θpop, we follow Danaher et al.
[2014] and uniformly sample the edge strengths.

In order to introduce inter-subject variability a set of variable edges, Ẽ, is randomly
selected according to the Erd®s and Rényi [1959] model. The cardinality of Ẽ is speci�ed,
such that only eran = |Ẽ| random edges are selected. The choice of eran directly a�ects
the extent of inter-subject variability in the simulated cohort. We write E(i) to denote the
subject-speci�c idiosyncrasies associated with the ith subject. Thus, for each subject edges
in Ẽ are added to the edge structure, E(i), with probability τ ∈ [0, 1]. If variable edges are
present their strength is sampled uniformly at random independently for each subject. We
note that setting τ = 0 results in an identical network for all subjects. At the other end of the
spectrum, setting τ = 1 results in all subjects having identical edge support (i.e., the same
edges will be present or absent across all subjects). However, edge weights for edges within Ẽ
are randomly sampled thereby introducing variability across subjects.

Pseudo-code for the proposed method is provided in Algorithm 1. It is important to note
that the proposed algorithm returns simulated network structure for both the population
connectivity network as well as the subject-speci�c networks. Moreover, we also obtain a
simulated network of highly variable edges captured in Ẽ.

Algorithm 1: Generate population and subject-speci�c random networks

Input: Number of nodes p, number of subjects N , size of random e�ects network
eran = |Ẽ|, a random e�ects edge probability τ ∈ [0, 1] and connectivity
strength r ∈ R+

Result: Population network, Θpop, subject-speci�c networks, {Θ(i)}, random e�ects
edges Ẽ

1 begin

2 Simulate Epop according to Barabási and Albert [1999] model
3 Build Θpop by randomly selecting edge weights from the interval [−r,− r

2 ] ∪ [ r2 , r]

4 Simulate Ẽ according to Erd®s and Rényi [1959] model with eran edges
5 for i ∈ {1, . . . , N} do

6 for each edge (j, k) do

7 if (j, k) ∈ Ẽ then

8 (j, k) ∈ E(i) with probability τ

9 Randomly select edge weights and signs for Θ(i)

10 return Epop, Ẽ, {E(i)} and Θpop, {Θ(i)}

2.2.1 Data generation

While Algorithm 1 can be employed to simulate functional connectivity networks across a
cohort of subjects, care must be taken when looking to simulate the corresponding data. In
this package, data is generated for each subject according to the following multivariate normal
distribution:

X(i) ∼ N
(
0,
(
PD

(
Θpop +Θ(i)

))−1
)
, (1)

4



where PD(·) is a function applied in order to ensure the resulting matrix is positive de�nite.
In this work we follow Danaher et al. [2014] and ensure Θpop + Θ(i) is positive de�nite by
rescaling the o�-diagonal entries. This involves dividing each o�-diagonal entry by the sum
of the absolute values of all o�-diagonal elements in its corresponding row. This results in
a non-symmetric matrix which we average with its transpose in order to obtain a symmetric
matrix.

2.3 Alternative simulation methods

In addition to the Algorithm described above, the MNS package also implements the network
simulation method described in Danaher et al. [2014]. Brie�y, this method simulates re-
lated networks for a three-subject problem. Nodes are divided into ten equally sized and
unconnected sub-networks. Within each sub-network the connectivity structure is simulated
according to the preferential attachment model of Barabási and Albert [1999], thus nodes dis-
play a power-law degree distribution. Of the ten networks, eight are present across all three
subjects. Of the remaining two sub-networks, one is present in two of the three subjects while
the �nal sub-network is present only in one subject.

While such an approach shares several similarities with the proposed method (e.g., node
degree follow a power-law distribution in both), there are several key di�erences. First and
foremost, this method is only able to simulate subject-speci�c networks. As a result, there is
no clear method from which to obtain population networks. Moreover, it can be argued that
this method of network simulation is unrealistic as nodes are divided into equally sized and
unconnected components. Finally, in its current implementation this method is only able to
simulate data for N = 3 subjects and the degree of inter-subject variability is �xed. This is in
contrast to the proposed method where networks can be simulated for any number of subjects
and the degree of inter-subject variability can be varied by changing parameters eran and τ .

2.4 Implementation and examples

In this section we provide various examples to highlight the network simulation methods within
the MNS package and give example code.

Within the MNS package, random networks are simulated via the gen.Network function.
This function implements both the proposed method for network simulation, described in
Section 2.2, as well as the method of Danaher et al. [2014], described in Section 2.3.

The gen.Network function takes as input a number of parameters, the most important of
which is the method parameter which de�nes the algorithm through which to simulate random
networks. This parameter can take one of two values; the default setting of method="cohort"
simulates random networks according to algorithm 1 while setting method="danaher" employs
the algorithm described in Section 2.3.

The number of nodes is speci�ed by parameter p, while the parameter Nobs speci�es the
number of observations to simulate per subject. If this parameter is not provided then only
the random networks are simulated and returned (i.e., random data for each subject is not
simulated). The remaining parameters only a�ect the "cohort" simulation method; Nsub is
the number of subjects2, sparsity is the sparsity of the population network3, REsize and

2note this is �xed at three for method="danaher"
3the number of edges added in each step of the Barabási and Albert [1999] algorithm is altered to obtain

the desired sparsity
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REprob correspond to eran and τ above and REnoise determines the variability across edges
in Ẽ. Some examples are described below.

In the following code networks are simulated using Algorithm 1 for N = 3 subjects. The
resulting object, Net, is a list which contains three entries. The �rst, called Networks, is a list
of length N where the ith entry corresponds the precision matrix for the ith subject. Note that
is will contain both the population edges, Epop, as well as the subject-speci�c edges, E(i). The
second entry, called PopNet, is the population network while the third entry, RanNet, indicates
which edges are highly variable. The resulting simulating networks can then be plotted using
the plot.MNS function. This is an S3 method for objects of class MNS and is discussed further
in Section 3.

> library("MNS")

> set.seed(1)

> N=3

> Net = gen.Network(method = "cohort", p = 20,

+ Nsub = N, sparsity = .2,

+ REsize = 20, REprob = .5,

+ REnoise = 1)

> # plot simulated networks:

> plot(Net, view="sub")

Figure 1: Random networks for N = 3 subjects simulated using Algorithm 1. Solid edges
indicate reproducible population edges present across all subjects while dashed edges represent
subject-speci�c idiosyncrasies and encode inter-subject variability. Edge color is indicative of
the nature of the partial correlation.

The above code results in the networks shown in Figure 1, one per subject. Solid edges are
population edges which are present across all subjects while dashed edges represent subject-
speci�c idiosyncrasies which are only present across some of the subjects. Finally, line color is
indicative of the nature of the relation between nodes; blue edges indicating a positive partial
correlation while negative partial correlations are indicated by red edges. We note there is
clear inter-subject variability introduced by the additional edges. Returning to Algorithm 1,
the blue edges are generated in step 2. While the set of red variable edges, Ẽ, is selected in
step four and these edges are randomly added in steps 7 and 8.

We note that it is possible to obtain networks varying edge densities by appropriately
adjusting the sparsity parameter Moreover, additional inter-subject variability can be intro-
duced by increasing REsize or REprob.
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In contrast, we may also simulate networks according to the model proposed in Section
2.3. Note that this only requires the number of nodes, p, to be speci�ed.

> library("MNS")

> set.seed(1)

> Net = gen.Network(method = "Danaher", p = 20)

> # plot simulated networks:

> plot(Net, view="sub")
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Figure 2: Random networks as simulated using method described in Section 2.3.

Finally, we note that if the Nobs argument is passed then multivariate data will be simu-
lated as discussion in Section 2.2.1. This can be achieved as follows, with an example plotted
in Figure 3.

> library("MNS")

> set.seed(1)

> N=3

> Net = gen.Network(method = "cohort", p = 20,

+ Nobs = 500,

+ Nsub = N, sparsity = .2,

+ REsize = 20, REprob = .5,
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+ REnoise = 1)

> # plot simulated networks:

> plot.ts(Net$Data[[1]][, c(1,2,3,4,5, 6)], main="")
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Figure 3: Simulated data for for six nodes across a single subject.

3 Mixed Neighborhood Selection

In this section we brie�y overview the Mixed Neighborhood Selection (MNS) algorithm and
presents its implementation in the MNS package. For a more thorough discussion please see
Monti et al. [2015a]. The MNS algorithm looks to model functional connectivity networks
as Gaussian graphical models (GGMs). This is a popular approach within the neuroimaging
community [Varoquaux and Craddock, 2013] and is partially motivated by the large number
of highly e�cient algorithms through which to estimate the corresponding graphical models.

Throughout this work we focus on neighborhood selection algorithms, �rst introduced by
Meinshausen and Bühlmann [2006]. The intuition behind neighborhood selection is that if
the edge structure at each node can be accurately inferred, then the overall edge structure
can also be inferred. Moreover, neighborhood selection methods are particularly appealing
since it can be shown that the neighborhood (i.e., the local edge structure) of any node,
v, can be inferred be considering the optimal linear prediction of observations at that node
given all other nodes. In such models, nodes that are not in the neighborhood of v will be
omitted from the set of optimal predictors. As a result, covariance selection is reformulated
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as a subset selection problem. The latter problem can be e�ciently solved via the use of the
Lasso [Tibshirani, 1996]. Thus neighborhood selection allows us to recast covariance selection
as a series of Lasso regression problems, each of which is solved independently.

The MNS algorithm extends neighborhood selection to the scenario where data from multi-
ple subjects is available. This is achieved by introducing an additional mixed e�ect component.
The objective of the additional random e�ect is to capture subject-speci�c idiosyncrasies. This
serves to yield a more accurate model of population covariance structure (as inter-subject vari-
ability is recognized and dealt with adequately) as well as accurate subject-speci�c networks
(as information is only leveraged across subjects when appropriate). Furthermore, we are also
able to obtain an estimate of inter-subject variability on an edge-by-edge basis. This is a cru-
cial advantage of the MNS algorithm when compared to alternative methods. By providing an
estimate of variability across edges we are able to obtain a clear intuition as to which regions
drive inter-subject variability.

In the remainder of this section we discuss some of the details of the MNS algorithm
together with the corresponding functions. In Section 3.1 we discuss parameter selection. The
visualization methods of the MNS package are discussed in Section 3.2.

3.1 Parameter selection

The MNS algorithm requires the input of two regularization parameters. The �rst parameter,
λ1, dictates the severity of regularization applied on the population network. Thus large values
of λ1 result in sparse population networks. The second parameter, λ2, penalizes subject-
speci�c deviations from the population network. Thus large values of λ2 will lead to identical
networks for all subjects. In the MNS function these two regularization parameters are speci�ed
by the lambda_pop and lambda_random arguments respectively. These parameters must be
selected with care as they are closely related; for example placing a high regularization on
the population network (i.e., a high λ1) may lead the model to over-estimate subject-speci�c
edges as compensation.

In the MNS package the regularization parameters are selected via K-fold cross-validation.
While alternative approaches based on information theoretic criteria could be employed we
found cross-validation to perform better in practice.

The cv.MNS function implements K-fold cross-validation. The dat argument contains the
data for all subjects. This should be in the form a list where the ith entry is the data for
the ith subject. The l1range and alpharange parameters specify the grid of regularization
parameters. Note that the sparsity penalty has been re-parameterized as follows:

α · λ ||β||1 + (1− α) · λ ||σ||1, (2)

where parameters λ are speci�ed by the argument lambda_range and parameters α by alpha_range.
Cross-validation methods are renown for their high computational cost. In order to reduce

some of the computational burden, the cv.MNS function can also be run in parallel by appro-
priately setting the parallel argument. Further, the cores argument allows users to specify
the number of cores to employ.

> set.seed(1)

> N=10

> Net = gen.Network(method = "cohort", p = 10,

+ Nsub = N, sparsity = .2,
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+ REsize = 10, REprob = .75,

+ REnoise = 1, Nobs = 75)

> # run cross-validation

> CV = cv.MNS(dat = Net$Data,

+ l1range = seq(.05, .075, length.out = 5),

+ alpharange = seq(.25, .75, length.out = 3),

+ K=5, parallel=TRUE)

> # fit MNS model:

> mns = MNS(dat = Net$Data,

+ lambda_pop = CV$l1 * (1-CV$alpha),

+ lambda_random = CV$l1 * (CV$alpha))

3.2 Visualization

The MNS package also contains the plot.MNS function. This is an S3 function for objects of
class MNS. It can be used both to visualize simulated networks, as shown in Section 2.4, or
to plot the output of the MNS algorithm. The view argument determines which results are
plotted. The "pop", "var" and "sub" options plot the population, variable and subject-speci�c
networks respectively.

Following from the example in Section 3.1 the population network, shown in Figure 4, can
be plotted as follows:

> plot(mns, view="pop")

As before, edge color is indicative of whether the partial correlation between each of the two
nodes is positive or negative while the edge thickness indicates the magnitude of the partial
correlation.

Moreover, since an edge-by-edge estimate of variability is provided for networks it is possi-
ble to identify speci�c functional relations which are irregular across the cohort. The network
of variable edges is plotted by changing the view argument:

> plot(mns, view="var")

The result is shown in Figure 5. Since variability is reported on an edge-by-edge basis the
results are easily interpretable. As before, the edge thickness is proportional to the magnitude
of the variance.
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Figure 4: Estimated population network.
This is the set of edges which are repro-
ducible across the entire cohort.
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Figure 5: Estimate variable edges. Plotted
edges are highly variable across the entire
cohort of subjects.
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Finally, it is also possible to view the estimated networks on a subject-speci�c basis. As
before, this is achieved by changing the view argument. Further, the subID argument selects
which subjects to plot. In the code below we plot the networks for the 2nd, 4th and 6th
subjects.

> plot(mns, view="sub", subID=c(2,4,6))
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Figure 6: Estimated subject-speci�c networks for subjects 2, 4 and 6. Population edges are
plotted as solid lines while variable edges are plotted as dashed lines.

The results, shown in Figure 6, show the estimated networks for three of the ten subjects.
As before, the color and thickness of each edge indicates the nature and magnitude of the
partial correlation. Population edges are plotted as solid lines whiles variable edges are plotted
as dashed lines.

4 Conclusion

In this vignette we have introduced the MNS package and highlighted the functionality and
use of its functions. The MNS package has been written in order to estimate multiple related
Gaussian graphical models. While the motivation for this work has been estimating resting-
state functional connectivity networks from fMRI data the methods described in this vignette
(and in Monti et al. [2015a]) can be applied in any scenario where the objective is to estimate
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multiple graphical models. Another possible application of the MNS algorithm would be to
study variability over time within a single subject. For example, it has been suggested that
functional connectivity is non-stationary [Monti et al., 2014, 2015b]. Thus by dividing resting-
state data into blocks it would be possible to study variability within a scan for a single subject.

In order to empirically validate the MNS algorithm, we have presented a novel algorithm
through which to simulate realistic networks. The proposed method can simulate networks
with varying levels of inter-subject variability. Moreover, the resulting networks demonstrate
several well-documents properties observed in functional connectivity networks; these include
a power-law distribution for the node degree as well as signi�cant inter-subject variability.

12



References

A. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):
509�512, 1999.

A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani. The architecture of complex
weighted networks. Proceedings of the National Academy of Sciences of the United States

of America, 101(11):3747�3752, 2004.

E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nature Reviews Neuroscience, 10(3):186�198, 2009.

P. Danaher, P. Wang, and D. Witten. The joint graphical lasso for inverse covariance estima-
tion across multiple classes. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 76(2):373�397, 2014.

A. Di Martino, C. Yan, Q. Li, E. Denio, F. Castellanos, K. Alaerts, J. Anderson, M. Assaf,
S. Bookheimer, and M. Dapretto. The autism brain imaging data exchange: towards a
large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry, 19
(6):659�667, 2014.

P. Erd®s and A. Rényi. On random graphs. Publicationes Mathematicae Debrecen, 6:290�297,
1959.

E. Finn, X. Shen, D. Scheinost, M. Rosenberg, J. Huang, M. Chun, X. Papademetris, and
T. Constable. Functional connectome �ngerprinting: identifying individuals using patterns
of brain connectivity. Nature neuroscience, 2015.

K. Friston. Functional and e�ective connectivity: a review. Brain connectivity, 1(1):13�36,
2011.

C. Kelly, B. Biswal, C. Craddock, X. Castellanos, and M. Milham. Characterizing variation
in the functional connectome: promise and pitfalls. Trends in cognitive sciences, 16(3):
181�188, 2012.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the
lasso. The Annals of Statistics, pages 1436�1462, 2006.

R. P. Monti, P. Hellyer, D. Sharp, R. Leech, C. Anagnostopoulos, and G. Montana. Estimating
time-varying brain connectivity networks from functional MRI time series. Neuroimage, 103:
427�443, 2014.

R. P. Monti, C. Anagnostopoulos, and G. Montana. Inferring brain connectivity networks
from functional MRI data via mixed neighbourhood selection. Preprint, 2015a.

R. P. Monti, R. Lorenz, P. Hellyer, R. Leech, C. Anagnostopoulos, and G. Montana. Graph
embeddings of dynamic functional connectivity reveal discriminative patterns of task en-
gagement in HCP data. In Pattern Recognition in NeuroImaging (PRNI), 2015 International

Workshop on, pages 1�4. IEEE, 2015b.

13



S. Mueller, D. Wang, M. Fox, T. Yeo, J. Sepulcre, M. Sabuncu, R. Shafee, J. Lu, and H. Liu.
Individual variability in functional connectivity architecture of the human brain. Neuron,
77(3):586�595, 2013.

M. Rubinov and O. Sporns. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage, 52(3):1059�1069, 2010.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267�288, 1996.

K. Van Dijk, M. Sabuncu, and R. Buckner. The in�uence of head motion on intrinsic functional
connectivity MRI. Neuroimage, 59(1):431�438, 2012.

G. Varoquaux and C. Craddock. Learning and comparing functional connectomes across
subjects. NeuroImage, 80:405�415, 2013.

G. Varoquaux, A. Gramfort, J. Poline, and G. Thirion. Brain covariance selection: better
individual functional connectivity models using population prior. In Advances in Neural

Information Processing Systems, pages 2334�2342, 2010.

14


